The Zeppelin Reborn: LZ-130


Whatever else the Nazi-government dominated operation might be accused of, they were not stupid. Beyersdorff pointed out it did not matter what gas was inside. The LZ-129 fabric would burn from the outside, regardless if the cells were filled with nitrogen. He wrote: “…that an incombustible gas cannot prevent a burning of the covering as long as this one has the characteristics of the test results.”

Quietly, behind the headlines, all LZ-130 fabric would be restarted from scratch, this time treated with fire-retardant calcium sulfamate. Never admitted, let alone published anywhere, researchers would never find anything about this in the archives. Why? Like their failed hook-on experiments in 1937, it was not made part of their record.  These distinctly unique fabric elements were discovered by Dr. Addison Bain’s direction of testing of an LZ-130 fabric sample kindly supplied by “Zeppelin Collector” editor Cheryl Ganz, in comparison to actual LZ-129 fabric samples collected by Hepburn Walker, Jr. from where the ship fell.

scannen0005The next step was a brilliant, two-solutions-in-one masterpiece. The aluminum pigmenting was revised to bronze-aluminum, which paid its weight penalty by adding both fire resistance and conductivity. Bronze won’t burn even bathed in a pure oxygen environment, and its low electrical resistance made the resultant mixture less likely to hold a charge. In a telegram to Dr. Arnstein, G-Y Zep’s Weyrick stated, “We now have the necessary papers and will ship at once the aluminum power to Luftshiffbau Zeppelin. This material is known commercially by the Aluminum Co of America as “Aluminum bronze powder, ALCOA #422, extra fine.”  Arnstein followed up with a letter to Knut Eckener, updating him on the shipment, and explaining the mesh was the way the particle size was calibrated: 100% of the powder would pass though a #325 mesh, but only 98% will go though a #400 mesh screen, referring to the mesh’s  number of openings per square inch.

Next, to insure the covering would be a complete electrical circuit to the girders, graphite was added to the ramie fastening cord to electrically bond the newly conductive covering to the framework. (This also has not been found anywhere in the archives, but was witnessed by Harold Dick.)  The newly fire-resistant and conductive covering could never develop a difference of potential between skin and frame again. Electrically igniting the new covering would have been effectively impossible. Noting the graphite impregnation of the ramie cord, Goodyear liaison engineer Harold Dick reported, “Many changes were made to reduce static buildup.” Bauer and Duggan further detailed, “…the electrical conductivity of the hull was increased and a possible reduction in this was controlled through the installation of appropriate measuring equipment…”

The diesel engine’s electron-rich exhaust and occasional sparks, however, were not so easily remedied.

Every Zep with external power cars since World War One had been the more efficient pusher configuration. Completely redesigning the power cars to tractor, i.e. forward mounted propellers, was the first step toward addressing these problems. The photo reveals the otherwise identical three units mounted and plumbed adjacent inside the hull – water, oil, and fuel service tanks for each engine.

None of this was known to anyone outside the Zeppelin works, of course. The general public was being fed the helium line, as we see in these excerpts from Popular Science, April 1938, “Can the Zeppelin Come Back?” by Edwin Teale:

“Flames streaming upward into the darkening sky above Lakehurst New Jersey nearly a year ago seemed to form a funeral pyre consuming the last hope of the rigid dirigible… Proponents of the big dirigibles were quick to point out that fire, and not structural failure, had produced the disaster. Photographs showed that, in spite of the fire and explosions, the framework of the zeppelin remained intact and settled slowly to the ground. It showed that it could withstand tremendous
lz130_cuttoff2strains, far in excess of those they would meet in flight… Months have passed. In the great sheds at Friedrichsaften, on the Swiss — German border, another giant, the LZ-130, is being groomed for its initial tests. A few weeks hence, it’s four 1200 hp diesel engines roar into action and the pointed nose of the great 800 – foot dirigible will turn to the west for the 2 1/2 day transatlantic crossing to Lakehurst. As the new dirigible plows through the sky on a westward trip, it will leave behind 500 workmen busily engaged in the construction of a still larger ship, the biggest Zeppelin on ever built. This monster, the LZ-131, will carry 70 passengers on each North Atlantic run… It is expected to be completed in late 1939.  The Germans, with Graf Zeppelin and Hindenburg, retained their faith in the flying cigars. These two skyliners shuttled back and forth to South America and the United States. They piled up hundreds of thousands of miles without a serious accident. The Graf Zeppelin even circled the globe. Completing 10 [should read 18 round] trips across the Atlantic in 1936, the Hindenburg for the first time in history prove that the rigid dirigible to be commercially profitable…

lz130_passagierraum140 years ago, when Count Zeppelin’s first dirigible was under construction in its floating shed on Lake Constance, helium was a rare laboratory gas. It commanded a price of something like $2000 a cubic foot. If that rate today one filling of the LZ -130 would cost more than $14 billion. However, in the intervening years, American scientists have devised methods of washing, cooling, and separation which enable them to extract helium in large quantities from the natural gas of several fields in the Southwest. As a result, the cost has steadily declined until now and now can be obtained for probably a cent a cubic foot. Last year the United States Congress authorized the sale of 17,000,000 ft.³ of helium to Germany for zeppelin use. It will be used for the original inflation of the 16 great cells of the airship, and for replacing helium loss during the transatlantic flights.

130-mainBecause America has a virtual monopoly on the gas, German scientists have devised a number of ways for conserving their supply. Before the start of a flight, the gas will be warmed to give it its greatest buoyancy. During the trip, moisture coming from the engine exhaust will be carefully collected to balance the loss of weight as the fuel is consumed, and does make it unnecessary to valve off gas to maintain a given altitude. By these steps, the scientists believe they will be able to conserve as much as 95% of the gas which hitherto was lost during a transatlantic voyage. The use of helium conquers the fire hazard. Another problem will take its place. This non-flammable gas is less buoyant than the inexpensive hydrogen. It will reduce the lifting power of the LZ-130 by 17 1/2 tons. Such a loss of payload will cut the profits which can be expected from its operation. Only by raising the rate for passengers and freight, can the income in attained by the Hindenburg be reached by the LZ-130.”    [End of article]

Back in 1921 when the US Navy’s C-7 had been ripped in a routine no-further-damage save, and thereby just happened to be available to do a test flight series using helium, the conversion was simple: cut the altitude, crew and payload in half, inflate, and take off. Of course that test showed it was impractical to operate any C-ship with helium, and also due to the extreme shortage,  C-7 was changed back and spent the rest of her days flying under hydrogen. Now the Germans were going to have to learn the same hard lessons as had been learned with LZ-126. Flying to Lakehurst non-stop from southern Germany to borrow ZR-1’s helium, the LZ-126/ZR-3 was never able to return to Europe.

Sadly, cutting the fare-paying passenger and freight load in half wasn’t going to be enough for LZ-130. As Bauer and Duggan wrote, “Much of the work already completed would have to be undone and new parts installed. Considerable effort would be needed to covert the passenger accommodation, the lightening of the ship would be expensive, and changes to the electrical control system would engender financial and completion date problems. It was expected that the additional cost would amount to over 1 million RM exclusive of the special development work on the water ballast recovery system and helium gas-heating apparatus. Nevertheless it was hoped the delivery date… would be 15 April 1938… Thus the first flight to the USA was set for the first week in May.”

20150626_112847While the “Popular Science” article and that time and money estimate was somewhat optimistic, nonetheless preparations for helium continued in earnest. As Dörr wrote in 1938, “…by some less visible measures, it was possible to reduce the weight of the hull. This was of importance in respect to the intended use of helium as the lifting agent, because this gas is much heavier than hydrogen, what adds up to a loss of 20 tons considering the size of the ship.” While most everything was re-examined to eliminate all possible excess weight, major changes to the already state-of-the-art completed structure were not going to be easy.

When it seemed that at least a majority helium fill was inevitable, the LZ-130, already a wonder of weight efficiency, was extensively reworked, saving 23,582 pounds. This was not even a good start, since the difference between hydrogen and helium first lost 55,125 pounds of lift – and the required water recovery system subtracted an additional 11,466 pounds of payload. They eliminated more than 12 tons of peace-of-mind fuel reserve, dropped 17,640 pounds of operating flexibility of water ballast, and denied a backup of 4,400 pounds of lube oil. Even after all that, ten crew members had to be dropped off, and they still lost the fares of ten passengers!

The literature mentions only certain details about structural changes. For example, the fins were altered a bit and there was a rearrangement of the ribs in the fins. A few cm were cut away from the outboard edges, reducing the overall fin area by 9 sq.m. Where the pressure was high there was no rib change, but further aft and inboard, where the pressures were low, some of the ribs were removed as they were believed unnecessary.

The removal of these ribs, cutting out of gussets, and the drilling of lightening holes saved approximately 60 kilos per fin. Changes were also made in the fin bracing cables at Frame 20, and new fitting installed so strain gauges could be attached.

Meyer wrote, “Not only did the inert gas cause a 7 percent loss in buoyancy, it also required about six tons of additional operating equipment. Most of the [required] savings in weight had to come off the net payload of the airship.” It is likely we shall never know the width and breadth of the intensified efforts that were made available to overcome the enormous obstacles of operating a Zeppelin with payload-slashing American helium. Chapters of a skmbt_22316112202370-copybook have been (and an entire website should be) dedicated to the LZ-130’s transformation as the best talent in the airship community, backed by considerable resources, tackled the formidable challenges of helium operations’ new realities.

First came the foundation of the rare gas itself.  A method of moving vast quantities of helium overseas did not exist, so it would have to be engineered and built. The BoM agreed to sell helium, but as with Goodyear’s blimp operations, one had to bring one’s own containers. A typical “K” bottle held less than 100 cubic meters, demand quickly overwhelming even the great stacks of Army-Navy bottles manifolded together. Since it took four of the largest railroad-based compressed helium tank cars just to inflate a WWII “M” type blimp, the US Gov’t was not just being stingy; the number of cars needed had not been manufactured. It was not going to be practical to construct a merchant ship capable of carrying the rail pressure tank cars that had yet to be built, and would not be even in WWII.

Clearly, higher pressure and greater capacity was needed if a ocean-going freighters were going to carry rigid-airship-useful amounts of the rare Texas gas. A new, larger and tougher dessau-copybottle (photo) was designed and manufactured in large quantities. The specially modified freighter Dessau was loaded with these new bottles (photo) and sailed into the port of Galveston to unload them and await the first helium fill.  This effort represents the largest investment in moving pressurized helium overseas in history, dwarfing the US support of WWII blimp operations in South America and the Mediterranean. Nothing like it was ever before, or will ever be attempted again. Moving quantities of more than 10 million cubic feet of the rare gas overseas was not practical until the 1960s with the perfection of 4-walled dewars that could keep it liquid for long voyages. (Today with liquid transport such a quantity all at once would be a major challenge – and financially ruinous.)

skmbt_22316112202370The next outlay of funds built the facilities to receive, purify and store the precious gas (photo). Hefty spending on this highly visible infrastructure earned the ire of those less favored in the socialist regime.  As the bottles were stacked and manifolded together, anyone with knowledge of how much helium could be produced with the Fort Worth plant operating at full capacity was thankful no American rigids had to be filled at the same time. In fact, if there was to be enough to fill the LZ-130, full production was going to have to start filling those bottles early on… but the Americans did not seem to be in any hurry.

zz-farbbild-07Meanwhile, LZ-130 had been designed to take advantage of some new interior arrangements. After the helium edict, what passenger facilities had been built were reworked.  As Dörr wrote in 1938, “The framework which was already assembled has remained unchanged in its configuration. But the facilities for the passengers had been removed, where they already were in place. The arrangement of the rooms was changed in regard of their position to each other, and at the same time the facilities were reduced to a number of only 40 passengers. Thus and by some less visible measures, it was possible to reduce the weight of the hull. This was of importance in respect to the intended use of helium as the lifting agent, because this gas is much heavier than hydrogen, what adds up to a loss of 20 tons considering the size of the ship.”

zz-farbbild-08Dörr continued, “The installations in the lower gangway as well as the arrangement and the distribution of the load (fuel, water tanks, etc.) were slightly adjusted to the new conditions compared to the Hindenburg. The electric power plant was positioned close to the passenger facilities, because this offered some advantages; it was also slightly modified if compared with the Hindenburg.” 


Although the hangar lengthening had been planned before the accident, now there was the need to build the larger airship LZ-131 just to carry as many passengers and as much freight has LZ-129 had done. Hugo Eckener released a presentation in which he re-worked the books to put a happy face on the profit and loss of helium-only operations. Amid the helium resource expenditure, work on lengthening the hangar pressed on in conjunction with the first rivets being squeezed on LZ-131 “Super-Zep” girders. With hoped-for profit or just taxpayer subsidy, after missing two seasons, the Zep liners were slated to be finally coming back.

With only half the passenger load, so too could the crew be trimmed. This allowed the rebuilding of both their quarters (photo) to allow greater expansion of the cell in that bay, hoping to push the new pressure height to 600 meters. (LZ-129 easily went twice as high to get over some weather on his last trip.)

Given all that, the next most important problem was that of disappearing weight, i.e. fuel tonnage being consumed and the ship’s crippling new inability to valve off lift to compensate. The solution, by Dr. Ludwig Dürr,  was as compact as it was elegant: reverse decades of Zeppelin propulsion by engineering completely new “tractor” style power cars that would not only contain water-recovery apparatus, but even partly pay for its induced drag.

img639Superficially the new power cars appeared to be little more than turned around and rounded off versions of the standard Zeppelin models dating to World War One, with the substitution of M-B DB-602s. Dual two-bladed props bolted to their twin drive hubs now featured a spinner.

The first flights were propelled with the same LZ-129 system of bolting two wooden props together. Early on, the forward cars received the new laminate three-blade props without the unique spinners seen in the photo.  Proving worthy, the new props were added to the after cars as well, providing improved efficiency in a program begun while LZ-129 was still flying. So early in the flight testing,  the twin-prop hub and one-piece props were removed and a new three-blade assembly was installed on the forward cars.

The literature is not very forthcoming with details, but from the outset, water ballast was going to have to be recovered from the exhaust – from inside the car to reduce the infamous drag dogging the American ships.  Dörr wrote, “…these engine cars are much bigger in their dimensions and also their shape is completely different.

EPSON MFP image The reason for this is the installation of a new ballast-water-recovery-system. By this installation, the consumption of lifting gas will be reduced or almost obsolete, while otherwise it is due to the fact that the loss of weight by burning fuel during the flight must be compensated by valving off gas. Now the weight of the used fuel is replaced by the weight of the water gained from the exhaust of the engines by cooling and condensation.”

A system to recover water from the exhaust had even even part of HMA No.1, the Mayfly. Stokes wrote, “The system comprised extension of the engine exhaust by 400 ft of thin section pipe along the keel and then forward again to the engine car, in the manner of the keel condenser current in mayflysteam launches, terminating in a water separator and storage tank. Trial in the shed gave water recovery of 52% of fuel weight, doubtless enhanced with the speed of flight improving heat transfer. Another trial was carried out in 1917, at Kingsnorth experimental R.N.A.S. station. As related by Wing Commander Cave-Brown-Cave, the contemporary doyen of British aircraft engine development. With a 240 hp engine, probably an “Eagle,” a honeycomb radiator of 25 mm (1″) tubes, 250 mm (10″) long took the exhaust through the tube spaces, with the air from the propeller passing through the tubes themselves. ‘The recovery was very satisfactory with the tubes clean, but decreased seriously after 10 hours running. Internals had stratified with virtually no deposit at the hottest zone, then dry carbon, oily carbon, and where water condensed, slimy oily carbon. A separator box with strands of hairy wool was adopted.’” The Germans had also experimentally tested a setup on the airship “Hansa.

motor-car-intThe LZ-126, adapted to American helium, had to borrow the exhaust-cooling condenser stacks developed following the ZR-1’s quickly consuming a period’s helium allotment within a few flights. Although eventually added to all ZR-3 engine cars, repeated attempts were made to improve the recovery efficiency. The next generation  built in to the ZRS ships, the Akron and Macon were easily distinguished by the condenser stacks extending vertically up their hulls. The optimistic goal for the new LZ-130 water recovery equipment’s parasitic weight was five tons, which though achieved, of course had to come out of payload as well.  The new problem with LZ-130: diesel oil does not contain enough hydrogen to produce water in the combustion process. The solution: new engines that would run well on a engineered blend, diesel fuel with added hydrogen.  Dörr continued, “For this purpose multistage cooling systems are installed inside the engine cars and the cooling air is pushed into the car by the now forwardly mounted propeller and ejected on its rear end.” Still, there was seriously increased drag in the new setup.

A 1939 technical paper offers some clues to the length and breadth of engineering expertise that went into overcoming the new LZ-130 problems via its advanced power cars.  We will never know all the innovations owing to the need for company, let alone state, secrets, but without a doubt the LZ-130’s propulsion system was the most marvelous engineering in the entire ship.


Seen inside is a complex system of multi-stage condensers. Durr’s original patent called out 4 stages of cooling, including a finned cooling pipe. As-built configuration show no fins and  seems to show less than 4 stages, but the external routing of the final exhaust cooling pipe is visible.  Of course there are also radiators to cool the lubricating oil and the engine’s water cooling jacket.


If the completed power cars resembled a modern jet engine nacelle, it was no co-incidence. The clever design hoped to overcome its drag penalty.


A shaft-driven turobfan helped rush that airflow out with such velocity as to produce some forward thrust, said to be enough to overcome the drag penalty. (Some might suggest this was the first hi-bypass turbofan.) The multi-stage cooling of the water-bearing exhaust stream had the extra beneficial 20081204170446730_0003-copyeffect of quieting the powerplants, and of course goes without being published, greatly reduced the free electrons found the exhaust stream. Sadly, remembering the ZRS condensers’ rather tedious cleaning process, and in spite of designed-in screens, it would have eventually been clogged with soot. (Zep mechanic Eugene Bentele told the producer they never did really solve the soot problem.) However temporarily the blend of Ruhrchemie’s synthetic gas oil with 13.5% hydrogen would, if the air temperature and humidity were cooperative, produce 1 kg of water for every kg of fuel consumed. Bauer and Duggan also noted, “However, the problems arising from using the sulfur-laden diesel fuel were already known… such an installation would, after only a short duration of time, cause severe fouling and corrosion of the equipment.” Sadly the water recovered was too laden with sulfuric acid to use as wash or even latrine flushing water.

After return to flight allowed real-world testing, a final refinement of adopting the low-sulfur “Kogasin Diesel,” with the added hydrogen, sweetened the recovered water to the point it did not quickly corrode the condensers, piping and storage tanks.

Since they could no longer start full-cell and just valve gas as it expanded gaining altitude, the plan was to heat up the helium just before take-off.  The extra lift was to last just long enough before airstream carried it away. Its loss was replaced with aerodynamic lift, once the ship got moving forward. It was hoped the ship could be rushed out of a warm hangar into colder outside air, and before the superheat difference radiated away, lift off with otherwise impractical loads. It was further speculated that, at the destination, the mission-end light ship could be force-landed in cooler evening times, to have ballast quickly hauled aboard. All that was hardly feasible with helium’s shorter range, since as Bauer and Duggan wrote, “…flights to South America it was assumed that intermediate landings would be necessary, these taking place at Seville and Pernambuco…” One plan subtracting another 800 kg from payload would have used the ship’s electrical system to heat the cells via built in electrical resistance heaters. Another experiment looked to purchase Kärcher heaters and employ them expecting to heat the cells up to 8.5 degrees above ambient.

Lifting gas heating turned out to be unnecessary, since on March 13, 1938, Germany and Austria announced their Anschluss.  Hitler marching into his country of birth unopposed was widely seen as the first step toward his planned world conquest. This “invasion” was all the excuse the Roosevelt administration needed to back out of the helium promise. Even a personal visit by Hugo Eckener, with his assurances military applications were impractical, and with reminders the US could cut off the supply at any time, failed to obtain the final signature to get the gas flowing in spite of what the Germans had agreed to pay.

fdreckenerC.E. Rosendahl battled FDR’s Secretary of the Interior in the American press, though Harold Ickes was just doing his President’s bidding when he refused to sign off on keeping the helium promise. In SNAFU, Rosendahl wrote,  “In airplanes and tanks, the world might have had abundant reason to suspect or fear Germany’s then growing military strength, but it knew also that Germany possessed no military airships and only two civil lighter-than-air aircraft.  Moreover, the helium requested by the Germans for their commercial airships was to be delivered by degrees, not all at one time.  We could have known at all times of any attempted accumulation.  We could easily have dried up the source or completely controlled the supply as we saw fit.  Helium couldn’t be smuggled.” Rosendahl saw the Roosevelt administration’s reneging on the promise as an obvious attempt to stall all airship development.

The Dessau would re-load those huge steel bottles and return them to Germany, empty.

Just as the British had a hydrogen-consuming engine to run electrical generators ready for R.101 when she was to return from India, LZ-130 was going to benefit from BMW research into a similar setup. Just as surely as the airship would lose weight while flying even with the water recovery in place, the constant consumption of lift from the electrical generator’s motors would go a long way to keeping the ship in balance. While hydrogen was cheap, obtaining it was dependent on a site having a hydrogen generator. So, not valving lift away made economic sense as well.

Finally, after over a year and an enormous amount of money had expended, the last Zeppelin built would be inflated as originally designed, and return to the skies.

Read on to LZ-130: The Last Zeppelin Missions


Read on to The Rigid’s Final Days and WWII

Purchase SNAFU

Back to Home Page